Abstract

In this paper, the influence of slot harmonics on magnetic forces and vibration is studied in a 120-slot/116-pole low-speed PM machine at no-load. It is shown how the lowest mode of vibration is produced at no-load due to slotting. Comparing the cases of open slots, semi-closed slots and magnetic wedges, the effect of slot closure on radial forces and torque production capability is discussed. Magnetic flux distribution in the airgap is computed using finite element analysis. Spatial harmonics due to slotting are investigated in different cases. Maxwell's stress tensor is employed to calculate radial and tangential components of the force density in the airgap. Spatial distribution of the total forces on the teeth and also time-dependent force waveform on one tooth are analyzed and discussed for different cases. It is shown how the magnitude of the lowest mode of vibration is reduced in the case of using semi-closed slots and magnetic wedges. Tangential force density distribution and torque production capability are also discussed. Structural analysis is presented to compute the maximum amplitude of the stator deformations due to the radial forces. Experimental results of the prototype generator are presented verifying the existence of the lowest mode of vibration at no-load because of the slot harmonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call