Abstract
A magnetic field Green's function expressed as an eigenmodes expansion and based on the plane wave method is formulated first for an infinite magnetic current line embedded in an unbounded 2D photonic crystal (PC) and then for a magnetic dipole embedded in a 2D PC truncated by two metallic plates. The underlying idea of analyzing a slot antenna printed on a 2D PC with a standard method of moment through the principle of equivalence is shown to motivate the present investigation. A complete solution for the line problem is derived, whereas the inadequacy of the method in nits present form for the dipole problem is demonstrated rigorously. Numerical results of the Green's function for the first problem are shown for different positions of the source, and a discussion about radiation patterns, asymptotic behaviors and convergence problems of the Green's function is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.