Abstract

The effect of coupling between sloshing and ship motions in the evaluation of slosh-induced interior pressures is studied. The coupling between sloshing loads and ship motions is modelled through a hybrid algorithm which combines a potential flow solution based on transient Green function for the external ship hydrodynamics with a viscous flow solution based on a multiphase interface capturing volume of fluid (VOF) technique for the interior sloshing motion. The coupled algorithm accounts for full nonlinear slosh forces while the external forces on the hull are determined through a blended scheme of linear radiation-diffraction with nonlinear Froude-Krylov and restoring forces. Consideration of this level of nonlinearities in ship motions is found to have non-negligible effects on the slosh-coupled responses and slosh-induced loads. A scheme is devised to evaluate the statistical measure of the pressures through long-duration simulation studies in extreme irregular waves. It is found that coupling significantly influences the tank interior pressures, and the differences in the pressures between coupled and uncoupled cases can be as much as 100% or more. To determine the RAO over the frequency range needed for the simulation studies in irregular waves, two alternative schemes are proposed, both of which require far less computational time compared to the conventional method of finding RAO at each frequency, and the merits of these are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.