Abstract

Natural gas is relatively clean, and its demand is currently increasing. In most cases, gas fields are located at the bottom of the sea. Therefore, floating production, storage, and offloading (FPSO) systems are now attracting considerable attention. This paper is related to the dynamical design of a FPSO system; in particular, it focuses on the free surface elevation induced by the waves in a horizontal cylindrical and axisymmetric liquid vessel with end caps. In this study, the theory of the wave height and resonant frequency in a horizontal cylinder subjected to pitching via external excitation is developed. Then, a theory taking into account the effect of perforated plates is introduced. A special discussion is made with regard to the number and location of the perforated plates and the effect of a partial opening in a perforated plate on the damping. Finally, the experimental data of resonant wave heights up to the third mode are shown in comparison to the theoretically derived results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call