Abstract

The dynamical behavior of liquid hydrogen shut-off during draining, and shut-off at the moment of the incipience of a suction dip have been investigated. It shows that a large amplitude surge is observed for liquid in the container at the moment of liquid hydrogen shut-off in reduced gravity. It also shows that slosh waves accompanied by a strong geyser are developed for surge-related flow fields induced by liquid hydrogen shut-off at the incipience of a suction dip. In the slosh wave excitation, both a lower gravity environment and higher flow rate before the shut-off of liquid draining are responsible for the initiation of greater amplitude slosh waves. Slosh wave excitation, due to shut-off during liquid hydrogen draining, shift the fluid mass distribution in the container which imposes time-dependent variation in the spacecraft moment of inertia. This provides important information necessary for on-orbit guidance and attitude control of spacecraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.