Abstract

Control of a moving liquid container is challenging because of unwanted transient and residual slosh. Although significant progress has been achieved at eliminating the fundamental sloshing mode, less success has been achieved with designing a controller to suppress slosh for an infinite number of modes. This study presented two methods to reduce an infinite number of sloshing modes in a moving liquid container. The first method is command smoothing to eliminate slosh by using the first-mode frequency. The second one is a combined input-shaping and command-smoothing architecture. The input shaper reduces slosh for the first mode, while the command smoother suppresses slosh for the third and higher modes. Both the command smoothing and the combined control scheme eliminate the transient and residual slosh to a very low level. However, the rise time of the combined controller is shorter than that of the command smoother. Simulations of a large range of motions are used to analyze liquid sloshing dynamics by using the proposed methods. Experimental results obtained from a moving container validate the simulated dynamic behavior and the effectiveness of the methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.