Abstract

Liquid sloshing within propellant tanks of launch vehicles and other major vehicles has been a major concern. Various methods have been utilized for the damping of slosh through Propellant Management Devices (PMD) accomplishing a wide range of results. Exploratory research conducted at the Embry-Riddle Aeronautical University Fuel Slosh Test Facility in development of an innovative PMD is presented. Embedding floating micro-baffles with an electro-active material such that the baffle can be manipulated when exposed to a magnetic field preserves the benefits of both floating and static baffle designs. Activated micro-baffles form a rigid layer at the free surface and provide a restriction of the fluid motion. Proposed micro-baffle design and magnetic activation source method along with proof-of-concept experiments comparing the scope of this research to previous PMD methods are presented. A computational fluid dynamics approach is outlined. Preliminary proof-of-concept testing indicates floating electro-active micro-baffles reduce the damping time of sloshing by up to 88% as compared to the same slosh condition with the absence of any PMDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call