Abstract

We investigate the optimality for model selection of the so-called slope heuristics, $V$-fold cross-validation and $V$-fold penalization in a heteroscedastic with random design regression context. We consider a new class of linear models that we call strongly localized bases and that generalize histograms, piecewise polynomials and compactly supported wavelets. We derive sharp oracle inequalities that prove the asymptotic optimality of the slope heuristics---when the optimal penalty shape is known---and $V$ -fold penalization. Furthermore, $V$-fold cross-validation seems to be suboptimal for a fixed value of $V$ since it recovers asymptotically the oracle learned from a sample size equal to $1-V^{-1}$ of the original amount of data. Our results are based on genuine concentration inequalities for the true and empirical excess risks that are of independent interest. We show in our experiments the good behavior of the slope heuristics for the selection of linear wavelet models. Furthermore, $V$-fold cross-validation and $V$-fold penalization have comparable efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.