Abstract

Conducting research on slope failure risk assessment is beneficial for the sustainable development of slopes. There will be various failure modes considering both the randomness of the groundwater level and soil shear strength parameters. Based on the integrated failure probability (IFP), the traditional failure risk analysis needs to count all failure modes, including the failure probability (Pf) and failure risk coefficient (C), one-by-one. A new slope failure risk assessment method that uses the sum of the element failure risk to calculate the overall failure risk is proposed in this paper and considers both the randomness of the groundwater level and soil shear strength parameters. The element failure probability is determined by their location information and failure situation; the element failure risk coefficient is determined by their area. It transforms the complex overall failure risk problem into a simple element failure risk problem, which simplifies the calculation process and improves the calculation efficiency greatly. The correctness is verified with the systematic analysis of a classical case. The results show that the slope failure probability and failure risk are greatly increased from 1.40% to 3.30% and 0.829 m2 to 2.094 m2 with rising groundwater level, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call