Abstract

Traditionally 4xxx casting alloys are used for the additive manufacturing of structurally optimised lightweight parts in space, aerospace and automotive. However, for such applications there is a need for hardenable high-strength Al-alloys exceeding the properties of the 4xxx alloys family. The study analyses the hardness response of different heat treatment temperatures and hold durations applied to a Sc- and Zr-modified Al-Mg (5xxx-) alloy (Scalmalloy®) processed by Selective Laser Melting, and compares the mechanical properties and microstructure in the as-processed and annealed condition, and these properties are clearly related to the very fine grained microstructure. The results show that the static mechanical properties are exceptionally good with Rm-values exceeding 500MPa along with almost no build-orientation related anisotropic effects, and a high ductility even in the heat treated condition. These properties are clearly related to the very fine grained material, along with the good hardenability of the alloy. The stress-strain curves show the typical Portevin-Le-Chatelier (PLC) effect as known for other 5xxx alloys. Due to significant grain boundary pinning by different particles the very fine-grained bi-modal microstructure originating from the SLM-process can be maintained even in the heat treated condition, and only a HIP treatment leads to local grain growth only in coarser grained regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call