Abstract

Many proteins use a long channel to guide the substrate or ligand molecules into the well-defined active sites for catalytic reactions or for switching molecular states. In addition, substrates of membrane transporters can migrate to another side of cellular compartment by means of certain selective mechanisms. SLITHER (http://bioinfo.mc.ntu.edu.tw/slither/or http://slither.rcas.sinica.edu.tw/) is a web server that can generate contiguous conformations of a molecule along a curved tunnel inside a protein, and the binding free energy profile along the predicted channel pathway. SLITHER adopts an iterative docking scheme, which combines with a puddle-skimming procedure, i.e. repeatedly elevating the potential energies of the identified global minima, thereby determines the contiguous binding modes of substrates inside the protein. In contrast to some programs that are widely used to determine the geometric dimensions in the ion channels, SLITHER can be applied to predict whether a substrate molecule can crawl through an inner channel or a half-channel of proteins across surmountable energy barriers. Besides, SLITHER also provides the list of the pore-facing residues, which can be directly compared with many genetic diseases. Finally, the adjacent binding poses determined by SLITHER can also be used for fragment-based drug design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call