Abstract

Signal-to-noise (S/N) ratio theory has proven to be useful in understanding, designing, and optimizing spectrophotometric measurement systems. Although a narrower spectral bandwidth does improve the resolution of closely spaced peaks, it also decreases the Signal-to-noise ratio. The narrowest slit width should be used that will yield an acceptable Signal-to-noise ratio. In this research, the wavelengths of peak absorbance of the holmium glass filter were determined to attain the optimum Signal-to-noise ratio accompanied with spectral bandwidths of 0.1 nm, 0.2 nm, 0.5 nm, 0.8 nm, 1 nm, 2 nm, 3 nm and 5 nm. The influence of spectral bandwidth on the Signal-to-noise ratio was by far the most important parameter affecting the location of the measured wavelengths of absorbance or transmittance of the sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.