Abstract

Abstract Taylor-Couette flow in the annulus was investigated by numerical simulation. The stability of Taylor-Couette flow and its heat transfer process of four different models were studied. By comparing the result in four different models, it is found that the Nusselt number of the model with slit aspect ratio of 0.75 is larger than the result of other models, with the further increasing of aspect ratio, the heat transfer performance of the fluid in the annular gap is not enhanced significantly. The Nusselt number of the model with aspect ratio of 0.75 increases as the Reynolds number increases. Additionally, the temperature gradient has the inhibition effect on the transition from laminar Couette flow to Taylor vortex flow, and as the temperature gradient increasing, this effect becomes more obvious. Finally, the fitting empirical formulas of the model with aspect ratio of 0.75 were obtained at different conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.