Abstract
A critical problem in implementing interactive perception applications is the considerable computational cost of current computer vision and machine learning algorithms, which typically run one to two orders of magnitude too slowly to be used interactively. Fortunately, many of these algorithms exhibit coarse-grained task and data parallelism that can be exploited across machines. The SLIPstream project focuses on building a highly-parallel runtime system called Sprout that can harness the computing power of a cluster to execute perception applications with low latency. This paper makes the case for using clusters for perception applications, describes the architecture of the Sprout runtime, and presents two compute-intensive yet interactive applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.