Abstract

The investigation of hydrodynamics near seabed is an initial input to study marine current turbine-induced seabed scour. The authors investigated the slipstream between the seabed and the marine current turbine via OpenFOAM. The axial component of velocity is the dominating velocity of flow below marine current turbine. The maximum axial velocity under the turbine blades is around 1.07 times of the initial incoming flow. The maximum radial and tangential velocity components of the investigated layer are approximately 4.12% and 0.22% of the maximum axial velocity. The slipstream varies in direct proportion to the incoming velocity. A schematic diagram to describe the flow pattern under the marine current turbine has been proposed based on the study. The turbine adopted in current simulation has three blades. The acceleration of flow under the marine current turbine changes seabed boundary layer profile. The height of tip clearance and turbine geometry are the two principal parameters in scour design of the marine current turbine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.