Abstract

Slippery liquid-infused porous surfaces (SLIPS) have received widespread attention in the antifouling field. However, the reduction in antifouling performance caused by lubricant loss limits their application in marine antifouling. Herein, inspired by the skin of a poison dart frog which contains venom glands and mucus, a porous liquid (PL) based on ZIF-8 is prepared as a lubricant and injected into a silicone polyurethane (SPU) matrix to construct a new type of SLIPS for marine antifouling applications: the slippery porous-liquid-infused porous surface (SPIPS). The SPIPS consists of a responsive antifoulant-releasing switch between "defensive" and "offensive" antifouling modes to intelligently enhance the antifouling effect after lubricant loss. The SPIPS can adjust antifouling performance to meet the antifouling requirements under different light conditions. The wastage of antifoulants is reduced, thereby effectively maintaining the durability and service life of SLIPS materials. The SPIPS exhibits efficient lubricant self-replenishment, self-cleaning, anti-protein, anti-bacterial, anti-algal, and self-healing (97.48%) properties. Furthermore, it shows satisfactory 360-day antifouling performance in actual marine fields during boom seasons, demonstrating the longest antifouling lifespan in the field tests of reported SLIPS coatings. Hence, the SPIPS can effectively promote the development of SLIPS for neritic antifouling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call