Abstract

Most marine antifouling coatings rely on the release of toxic biocides to prevent fouling organisms from attaching, causing environmental pollution. This work proposes a biocide-free environmentally friendly marine antifouling strategy. Slippery-liquid-infused electrostatic flocking surfaces (S-EFSs) were prepared by combining electrostatic flocking and slippery liquid infusion. They exhibited complete mussel resistance after comparing adhesion to the surface of different materials in the laboratory. In addition, the unique surface morphology including lubricant was found to be crucial to their antifouling performance. Real-time polymerase chain reaction showed that different surfaces significantly affected the gene-expression levels of the mussels' foot proteins, where higher levels on S-EFSs meant that the mussels tried to secrete more proteins but they failed to adhere. Moreover, a 148-day field test showed that S-EFSs can resist not only mussels but also tubeworms, tunicates, and barnacles, and the total fouling area decreased by more than 50% compared to control samples. Notably, the maturity of electrostatic flocking technology and the simplicity of the modification steps used endow this strategy with the potential to significantly reduce the economic loss caused by marine biofouling in practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.