Abstract

Part II of the present study quantitatively analyzes orthogonal metal cutting processes based on the new slip-line model proposed in Part I. The applicable range of the model is illustrated, followed by an explanation of the non-unique nature of the model. It is suggested that the tool edge roundness be comprehensively defined by four variables. Namely: tool edge radius, position of the stagnation point on the tool edge, tool–chip frictional shear stress above the stagnation point on the tool edge, and tool–chip frictional shear stress below the stagnation point on the tool edge. The effects of these four variables on eight groups of machining parameters are investigated. These include (1) cutting force, thrust force, resultant force, and the ratio of cutting force to thrust force; (2) ploughing force; (3) chip up-curl radius; (4) chip thickness; (5) tool–chip contact length; (6) thickness of the primary shear zone; (7) average shear strain in the primary shear zone; and (8) average shear strain-rate in the primary shear zone. The importance of tool edge roundness is further reinforced by a series of new research findings made in this paper. It is revealed that the size effect highly depends on the material constitutive behavior in machining. The dependence of the thickness of the primary shear zone and the dependence of the magnitude of shear strain-rate in the primary shear zone on the tool edge radius are well demonstrated. A surprisingly good agreement between theory and experiments is reached.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call