Abstract

A variant of the Stoneley-wave problem, namely slip waves between two homogeneous elastic half-spaces whose interface is incapable of supporting shear stresses, is studied. For two isotropic half-spaces there is either no or one slip-wave mode. In the case of anisotropic half-spaces, the possibility of a new slip-wave mode, called the second slip-wave mode, arises. The case of two identical anisotropic half-spaces of the same orientation is discussed in detail; criteria for the existence of a second slip-wave mode in terms of the nature of the transonic state are developed. It is concluded that for many anisotropic media a second slip-wave mode will exist within certain ranges of orientation of the slip-wave geometry. Numerical computations for iron (cubic symmetry) demonstrate that second slip-wave modes indeed exist in this material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call