Abstract

Microstructural plastic strain distribution evolution is highly heterogeneous even in single-phase alloys. One of the important factors that govern this heterogeneity is slip/twinning transfer across grain/phase boundaries. In this regard, the fundamentals of transfer across grain boundaries have drawn significant attention in the literature, while the understanding of phase boundaries remains comparatively limited. (α+β) titanium alloys provide a profound platform to explore these phenomena, since: (i) both of the present phases can exhibit plastic deformation at similar microscopic strain levels; and (ii) both dislocation slip and mechanical twinning can be triggered to accommodate plastic strain. In the present work, we evidenced a deformation transfer unit involving dislocation slip in the β-phase and {101¯2}-mechanical twin in the α-phase. We revealed by crystallographic calculations that the combination of Schmid factor and the Luster-Morris compatibility factor enables a rational quantification for the inception propensity of the slip-twinning transfer event. Our in-situ strain mapping approach verified that this sort of transfer activity can plausibly alleviate strain incompatibility/localization, demonstrating the potential to facilitate deformation homogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.