Abstract

Abstract. Natural seismicity and tectonic activity are important processes for the site-selection and for the long-term safety assessment of a nuclear waste repository, as they can influence the integrity of underground structures significantly. Therefore, it is crucial to gain insight into the reactivation potential of faults. The two key factors that control the reactivation potential are (a) the geometry and properties of the fault such as strike direction and friction angle, and (b) the orientations and magnitudes of the recent stress field and future changes to it due to exogenous processes such as glacial loading as well as anthropogenic activities in the subsurface. One measure of the reactivation potential of faults is the ratio of resolved shear stress to normal stresses at the fault surface, which is called slip tendency. However, the available information on fault properties and the stress field in Germany is sparse. Geomechanical numerical modelling can provide a prediction of the required 3D stress tensor in places without stress data. Here, we present slip tendency calculations on major faults based on a 3D geomechanical numerical model of Germany and adjacent regions of the SpannEnD project (Ahlers et al., 2021). Criteria for the selection of faults relevant to the scope of the SpannEnD project were identified and 55 faults within the model area were selected. For the selected faults, simplified geometries were created. For a subset of the selected faults, vertical profiles and seismic sections could be used to generate semi-realistic 3D fault geometries. Slip tendency calculations using the stress tensor from the SpannEnD model were performed for both 3D fault sets. The slip tendencies were calculated without factoring in pore pressure and cohesion, and were normalized to a coefficient of friction of 0.6. The resulting values range mainly between 0 and 1, with 6 % of values larger than 0.4. In general, the observed slip tendency is slightly higher for faults striking in the NW and NNE directions than for faults of other strikes. Normal faults show higher slip tendencies than reverse and strike slip faults for the majority of faults. Seismic events are generally in good agreement with the regions of elevated slip tendencies; however, not all seismicity can be explained through the slip tendency analysis.

Highlights

  • Slip tendency calculations using the stress tensor from the SpannEnD model were performed for both 3D fault sets

  • Die seismischen Ereignisse stimmen im Allgemeinen gut mit den Regionen mit erhöhter Slip Tendency überein, jedoch kann nicht die gesamte Seismizität durch die Analyse der Slip Tendency erklärt werden

Read more

Summary

Introduction

For a subset of the selected faults, vertical profiles and seismic sections could be used to generate semi-realistic 3D fault geometries. Slip tendency calculations using the stress tensor from the SpannEnD model were performed for both 3D fault sets. The observed slip tendency is slightly higher for faults striking in the NW and NNE directions than for faults of other strikes. Normal faults show higher slip tendencies than reverse and strike slip faults for the majority of faults.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.