Abstract

AbstractThe significant risk associated with fault reactivation often necessitates slip tendency analyses for effective risk assessment. However, such analyses are challenging, particularly in large areas with limited or absent reliable stress measurements and where the cost of extensive geomechanical analyses or simulations is prohibitive. In this paper, we propose a novel approach using a physics‐informed neural network that integrates stress orientation and satellite displacement observations in a top‐down multi‐scale framework to estimate two‐dimensional slip tendency analyses even in regions lacking comprehensive stress data. Our study demonstrates that velocities derived from a continental scale analysis, combined with reliable stress orientation averages, can effectively guide models at smaller scales to generate qualitative slip tendency maps. By offering customizable data selection and stress resolution options, this method presents a robust solution to address data scarcity issues, as exemplified through a case study of the South Australian Eyre Peninsula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.