Abstract
A slip tendency analysis is used to assess the reactivation potential of shear and dilational fractures in a deep geothermal reservoir in the Northeast German Basin, based on the notion that slip on faults is controlled by the ratio of shear to normal stress acting on the plane of weakness in the in situ stress field. The reservoir rocks, composed of Lower Permian sandstones and volcanics, were stimulated by hydraulic fracturing. A surprisingly low microseismic activity was recorded with moment magnitudes M W ranging from −1.0 to −1.8. The slip tendency analysis suggests a critically stressed reservoir exists in the sandstones, whereas the volcanic rocks are less stressed. Rock failure first occurs with an additional pore pressure of 20 MPa. Presumed failure planes form a conjugate set and strike NW and NE. Slip failure is more likely than tensional failure in the volcanic rocks because high normal stresses prevent tensional failure. These results from slip tendency analysis are supported by the spatial distribution of recorded microseismicity. Source characteristics indicate slip rather than extension along presumed NE striking failure planes. This suggests that slip tendency analysis is an appropriate method that can be used to understand reservoir behavior under modified stress conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.