Abstract
A Pseudo Direct Drive (PDD) is a permanent magnet machine with an integrated magnetic gear. It has two magnetically coupled rotors. When subjected to a load torque higher than the pull-out torque, slip between the two rotors may occur. Although this may not cause any damage to the PDD or the load, it could, if left uncontrolled, result in undesirable consequences such as loss of power transfer, excessive speed on the high-speed rotor (HSR), incorrect commutation signal, and/or loss of load speed/position control. This paper proposes a technique for a PDD equipped with a position/speed sensor on each rotor to control the slip caused by external overload torques and to enable a swift recovery when they are removed. However, when the PDD is equipped with only one sensor on the HSR, it is impossible to determine the position/speed of the low-speed rotor using an observer after slip occurs, which precludes a swift and controlled recovery. Therefore, a novel technique which prevents the slip between the two rotors under overload conditions is also proposed. Both techniques have been successfully implemented and demonstrated on a prototype PDD drive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.