Abstract

The slip-line field methods are widely used in solving cutting problem; however, most of which were focused on the pressure-independent materials. In this work, a new slip-line field model for orthogonal cutting of pressure sensitive materials is developed. Analytical characterization for orthogonal cutting process is obtained, which can give the explicit expressions for the shear angle, cutting force, and chip thickness in terms of the tool geometry, the friction coefficients on the tool flat, and the internal friction angle of the materials. To investigate the effect of the material and cutting parameters on cutting process, the finite element simulation is performed as well. The comparisons between the shear angle and cutting force predicted by the theoretical model with those obtained from finite element model simulation are made. The good agreement of the predicted results with the numerical results clearly reveals that the proposed slip-line field model can satisfactorily characterize the orthogonal cutting behavior of the pressure sensitive materials. Further analysis has demonstrated that the pressure sensitivity of materials has a significant influence on cutting process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.