Abstract

Microscale fluid dynamics has received intensive interest due to the emergence of Micro-Electro-Mechanical Systems (MEMS) technology. When the mean free path of the gas is comparable to the channel's characteristic dimension, the continuum assumption is no longer valid and a velocity slip may occur at the duct walls. The elliptic cross-section is one useful channel shape that may be produced by microfabrication. The elliptic microchannels have potential practical applications in MEMS. Slip flow in elliptic microchannels has been examined and a detailed theoretical analysis has been performed. A solution is obtained using elliptic cylinder coordinates and the separation of variables method. A simple model is developed for predicting the Poiseuille number in elliptic microchannels for slip flow. The developed model may be used to predict mass flow rate and pressure distribution of slip flow in elliptic microchannels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call