Abstract

Abstract The present article deals with the effects of velocity slip, chemical reaction on heat and mass transfer of micropolar fluid in expanding or contracting walls with Hall and ion slip currents. Assume that there is symmetric suction or injection along the channel walls, which are maintained at nonuniform constant temperatures and concentrations. The governing Navier–Stokes equations are reduced to nonlinear ordinary differential equations by using similarity transformations then solved numerically by quasilinearization technique. The effects of various parameters such as wall expansion ratio, chemical reaction parameter, Prandtl number, Schmidt number, slip parameter, Hall and ion slip parameters on nondimensional velocity components, microrotation, temperature and concentration are discussed in detail through graphs. It is observed that the concentration of the fluid is enhanced with viscosity. Further, the temperature and concentration of the fluid are increased whereas the microrotation is decreased for an expansion or contraction of the walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call