Abstract

This study aims to numerically examine the fluid flow and heat transfer in a porous microchannel saturated with power-law fluid. The governing momentum and energy equations are solved by using the finite difference technique. The present study focuses on the slip flow regime, and the flow in porous media is modeled using the modified Darcy-Brinkman-Forchheimer model for power-law fluids. Parametric studies are conducted to examine the effects of Knudsen number, Darcy number, power law index, and inertia parameter. Results are given in terms of skin friction and Nusselt number. It is found that when the Knudsen number and the power law index decrease, the skin friction on the walls decreases. This effect is reduced slowly while the Darcy number decreases until it reaches the Darcy regime. Consequently, with a very low permeability the effect of power law index vanishes. The numerical results indicated also that when the power law index decreases the fully-developed Nusselt number increases considerably especially, in the limit of high permeability, that is, nonDarcy regime. As far as Darcy regime is concerned the effects of the Knudsen number and the power law index of the fully-developed Nusselt number is very little.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.