Abstract

This study demonstrates the analysis of slip effects for the steady, creeping flow of incompressible slightly non-Newtonian fluid through the permeable slit with uniform reabsorption. A system of two-dimensional partial differential equations which completely describe the flow phenomenon along with non-homogeneous boundary conditions are considered and non-dimensionalized. The resulting equations are then linearized using recursive approach. Expressions for all flow properties like stream function, velocity components, volumetric flow rate, pressure distribution, shear and normal stresses in general and on the walls of the slit, fractional absorption and leakage flux are derived which are strongly dependent on slip coefficient. The points of maximum velocity components are also identified. The behavior of the flow variables is also discussed graphically for involved parameters at various positions of the channel. The results indicate that slip coefficient considerably influences the flow variables. The obtained results are in good agreement with the previous solutions as the slip coefficient tends to zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.