Abstract

High cycle and very high cycle fatigue (VHCF) crack initiation mechanism of TC17 alloy joint with heterogeneous microstructures in FZ has been studied at the stress ratio of 0.1. Intrinsic deficiencies of slip deformation in β grains with few martensites and cracking coarse grain boundary between prior β grains with martensite colonies account for the high cycle fatigue (HCF) of joints. The average diameter of intergranular welding pores regarding VHCF crack nucleation is measured to be ∼36 μm. The driving force governing the crack nucleation from intrinsic deficiencies in HCF to porosity defects in VHCF is ∼1.66 MPa·m1/2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.