Abstract
The effect of slip degassing on the microstructure and mechanical properties of slip cast and reaction bonded Si3N4 was studied. The slip was prepared by aqueous ball milling of silicon (Si) powder. Hydrogen bubbles, a result of Si oxidation during milling, were degassed from the slip using a combination of vacuum and heat. The slip was then cast into a plaster mould to obtain rectangular green bodies. The Si green samples were sintered in a nitrogen atmosphere at 1500°C to convert the Si to Si3N4. After that the nitrided samples were polished to dimensions of 3 x 4 x 30 mm. The density, porosity, flexural strength, phase content and microstructure of the sintered samples were studied. The results showed that the degassing process increased the slip density. After casting and subsequent nitridation, it was found that the average apparent density of the samples increased from 2.89 to 2.95 g/cm3, the porosity decreased from 52.9 to 49.5 %, and the flexural strength increased from 8.1 to 9.3 MPa, when the degassed slip was used. A microstructural examination showed that the pores in the samples were filled with whiskers, which most likely resulted from a vapor phase growth mechanism. The samples produced from the degassed slip tended to have fewer whiskers, due to the reduced pore size and volume. A comparison of the XRD patterns showed no phase differences between the samples. The appearance of Si2N2O, and SiC likely resulted from the reactions between O2 and C impurities with Si3N4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.