Abstract

Abstract The topology of the coronal magnetic field has a strong impact on the properties of the solar corona and presumably on the origin of the slow solar wind. To advance our understanding of this impact, we revisit the concept of so-called slip-back mapping and adapt it to determine open, closed, and disconnected flux systems that are formed in the solar corona by magnetic reconnection during a given time interval. In particular, the method we developed allows us to describe magnetic flux transfer between open and closed flux regions via so-called interchange reconnection with an unprecedented level of detail. We illustrate the application of this method to the analysis of the global MHD evolution of the solar corona driven by idealized differential rotation of the photospheric plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.