Abstract

Many biological systems are composed of unreliable components which self-organize efficiently into systems that can tackle complex problems. One such example is the true slimemold Physarum polycephalum which is an amoeba-like organism that seeks food sources and efficiently distributes nutrients throughout its cell body. The distribution of nutrients is accomplished by a self-assembled resource distribution network of small tubes with varying diameter which can evolve with changing environmental conditions without any global control. In this paper, we use a phenomenological model for the tube evolution in slime mold and map it to a path formation protocol for wireless sensor networks. By selecting certain evolution parameters in the protocol, the network may evolve toward single paths connecting data sources to a data sink. In other parameter regimes, the protocol may evolve toward multiple redundant paths. We present detailed analysis of a small model network. A thorough understanding of the simple network leads to design insights into appropriate parameter selection. We also validate the design via simulation of large-scale realistic wireless sensor networks using the QualNet network simulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call