Abstract

Hybrid transformer-based segmentation approaches have shown great promise in medical image analysis. However, they typically require considerable computational power and resources during both training and inference stages, posing a challenge for resource-limited medical applications common in the field. To address this issue, we present an innovative framework called Slim UNETR, designed to achieve a balance between accuracy and efficiency by leveraging the advantages of both convolutional neural networks and transformers. Our method features the Slim UNETR Block as a core component, which effectively enables information exchange through self-attention mechanism decomposition and cost-effective representation aggregation. Additionally, we utilize the throughput metric as an efficiency indicator to provide feedback on model resource consumption. Our experiments demonstrate that Slim UNETR outperforms state-of-the-art models in terms of accuracy, model size, and efficiency when deployed on resource-constrained devices. Remarkably, Slim UNETR achieves 92.44% dice accuracy on BraTS2021 while being 34.6x smaller and 13.4x faster during inference compared to Swin UNETR. Code: https://github.com/aigzhusmart/Slim-UNETR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.