Abstract

The slit lamp is an essential instrument for eye care. It is used in navigated laser treatment with retina mosaicing to assist diagnosis. Specifics of the imaging setup introduce bothersome illumination artifacts. They not only degrade the quality of the mosaic but may also affect the diagnosis. Existing solutions in SLIM manage to deal with strong glares which corrupt the retinal content entirely while leaving aside the correction of semitransparent specular highlights and lens flare. This introduces ghosting and information loss. We propose an effective technique to detect and correct light reflections of different degrees in SLIM. We rely on the specular-free image concept to obtain glare-free image and use it coupled with a contextually driven probability map to segment the visible part of the retina in every frame before image mosaicing. We then perform the image blending on a subset of all spatially aligned frames. We detect the lens flare and label each pixel as 'flare' or 'non flare' using a probability map. We then invoke an adequate blending method. We also introduce a new quantitative measure for global photometric quality. We tested on a set of video sequences obtained from slit lamp examination sessions of 11 different patients presenting healthy and unhealthy retinas. The segmentation of glare and visible retina was evaluated and compared to state-of-the-art methods. The correction of lens flare and semitransparent highlight with content-aware blending was applied and its performance was evaluated qualitatively and quantitatively. The experiments demonstrated that integrating the proposed method to the mosaicing framework significantly improves the global photometric quality of the mosaics and outperforms existing works in SLIM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.