Abstract

Cooperative perception provides a novel way to conquer the sensing limitation on a single automated vehicle and potentially improves driving safety. To reduce the transmission data volume, existing solutions use the intermediate data generated by convolutional neural network (CNN) models, namely, feature maps, to achieve cooperative perception. The feature maps are however too large to be transmitted by the current V2X technology. We propose a novel approach, called Slim-FCP, to significantly reduce the transmission data size. It enables a channelwise feature encoder to remove irrelevant features for a better compression ratio. In addition, it adopts an intelligent channel selection strategy through which only representative channels of feature maps are selected for transmission. To evaluate the effectiveness of Slim-FCP, we further define a recall-to-bandwidth (RB) ratio metric to quantitatively measure how the recall of object detection changes with respect to the available network bandwidth. Experiment results show that Slim-FCP reduces the transmission data size by 75%, compared with the best state-of-the-art solution, with a subtle loss on object detection’s recall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.