Abstract

Traditionally the sliding window (SW) has been employed in vertex-based operational rate distortion (ORD) optimal shape coding algorithms to ensure consistent distortion (quality) measurement and improve computational efficiency. It also regulates the memory requirements for an encoder design enabling regular, symmetrical hardware implementations. This paper presents a series of new enhancements to existing techniques for determining the best SW-length within a rate-distortion (RD) framework, and analyses the nexus between SW-length and storage for ORD hardware realizations. In addition, it presents an efficient bit-allocation strategy for managing multiple shapes together with a generalized adaptive SW scheme which integrates localized curvature information (cornerity) on contour points with a bi-directional spatial distance, to afford a superior and more pragmatic SW design compared with existing adaptive SW solutions which are based on only cornerity values. Experimental results consistently corroborate the effectiveness of these new strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call