Abstract

This paper develops a sliding-mode control (SMC) approach for systems with mismatched uncertainties via a nonlinear disturbance observer (DOB). By designing a novel sliding surface based on the disturbance estimation, a DOB-based SMC method is developed in this paper to counteract the mismatched disturbance. The newly proposed method exhibits the following two attractive features. First, the switching gain is only required to be designed greater than the bound of the disturbance estimation error rather than that of the disturbance; thus, the chattering problem is substantially alleviated. Second, the proposed method retains its nominal performance, which means the proposed method acts the same as the baseline sliding-mode controller in the absence of uncertainties. Simulation results of both the numerical and application examples show that the proposed method exhibits much better control performance than the baseline SMC and the integral SMC (I-SMC) methods, such as reduced chattering and nominal performance recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call