Abstract

In this paper, the control strategy of a fully-active hybrid energy storage system, which uses two bi-directional DC/DC converters to decouple supercapacitor and battery pack from the DC bus, is proposed based on a 5th-order averaged model. Three control objectives, the battery and supercapacitor currents as well as the DC bus voltage, are regulated by using the two DC/DC converters. A Lyapunov-function-based controller is proposed to regulate the DC bus voltage to its reference value. In addition, a sliding-mode controller is designed to control the battery and supercapacitor currents to their reference values. The battery current reference is generated by the energy management strategy, while the supercapacitor current reference is generated by the Lyapunov controller to ensure DC bus voltage regulation. Simulation and experimental results show that the proposed control method has satisfactory performance, including robust tracking and a smooth transition when the load power varies in the large range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.