Abstract
Finding frequent patterns in a continuous stream of transactions is critical for many applications such as retail market data analysis, network monitoring, web usage mining, and stock market prediction. Even though numerous frequent pattern mining algorithms have been developed over the past decade, new solutions for handling stream data are still required due to the continuous, unbounded, and ordered sequence of data elements generated at a rapid rate in a data stream. Therefore, extracting frequent patterns from more recent data can enhance the analysis of stream data. In this paper, we propose an efficient technique to discover the complete set of recent frequent patterns from a high-speed data stream over a sliding window. We develop a Compact Pattern Stream tree (CPS-tree) to capture the recent stream data content and efficiently remove the obsolete, old stream data content. We also introduce the concept of dynamic tree restructuring in our CPS-tree to produce a highly compact frequency-descending tree structure at runtime. The complete set of recent frequent patterns is obtained from the CPS-tree of the current window using an FP-growth mining technique. Extensive experimental analyses show that our CPS-tree is highly efficient in terms of memory and time complexity when finding recent frequent patterns from a high-speed data stream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.