Abstract

The medium and high temperature tribological behavior of different iron aluminide thermal spray coatings was investigated. Several powders synthesized through different routes (ball milling, self-decomposition, and self-propagating high-temperature sintering (SHS)) were evaluated. High heterogeneity of conventional High Velocity Oxygen Fuel (HVOF) coatings plays a vital role in their sliding performance, but as long as their integrity is preserved under high temperature oxidizing conditions, the wear rates are found to be acceptable, as it occurs in the case of ball milled Fe-40Al (at.%) powder. The friction phenomenon and wear mechanisms were analyzed in detail through the wear track morphology, contact surface, and friction coefficients. The occurrence of brittle phases in the sprayed coatings, which are also present when tested at high temperatures, appeared to be crucial in accelerating the coating failure.

Highlights

  • Intermetallic compounds (IMCs) that are based on Ni and Fe aluminides are potentially applicable at moderate and high temperatures [1,2] due to their ability to form protective alumina layers that make them excellent candidates for withstanding oxidation, sulfidizing, and carburizing atmospheres, even at temperatures as high as 1000 ◦ C [3]

  • It can be observed that the prealloyed composition was characterized by the normal distribution that was centred at a mean size of 30 μm

  • The coating hardness of the sprayed coatings 1 and 2 proved to be very similar, despite their different composition and original powder; this can be explained by heterogeneous balance in the High Velocity Oxygen Fuel (HVOF) coating, resulting from the presence of oxide regions as well as Al-depleted regions

Read more

Summary

Introduction

Intermetallic compounds (IMCs) that are based on Ni and Fe aluminides are potentially applicable at moderate and high temperatures [1,2] due to their ability to form protective alumina layers that make them excellent candidates for withstanding oxidation, sulfidizing, and carburizing atmospheres, even at temperatures as high as 1000 ◦ C [3]. Possible applications of such coatings can be found in the gas turbine engine industry for commercial and military aircraft, industrial power generation, and marine applications. The sliding wear performance was examined under several contact conditions

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.