Abstract

Poly(ethylene terephthalate) (PETP) was treated by plasma immersion ion implantation (PIII or PI 3) in nitrogen. The surface changes were characterised by XPS and water contact-angle measurements. Sliding tribological properties of untreated and nitrogen PIII-treated PETP against conventional low carbon structural steel S235 were studied under dry and water-lubricated conditions by a pin-on-disc tribometer. XPS results suggested the evolution of surface composition and bonding towards those of amorphous hydrogenated carbon-nitride. Water contact-angle decreased implying increased surface wettability. At a very low Pv factor (0.0075 MPa m s −1) for the nitrogen PIII-treated PETP the dry friction coefficient was smaller than, while the lubricated friction coefficient was similar to, the corresponding value of the untreated variant. At higher Pv factors (near 0.1 MPa m s −1), however, both the dry and lubricated friction coefficients were higher for the treated sample than for the untreated variant, suggesting an increased adhesion component of friction for the nitrogen PIII-treated PETP in this region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.