Abstract

Periodic exogenous signals often exist in motion systems, especially those involving one or more rotating elements. These periodic exogenous signals deteriorate the performance of motion systems, and these adverse effects cannot be practically eliminated by straightforwardly increasing feedback control gains due to sensor noise, actuator saturation, and unmodeled plant dynamics. This paper describes a sliding repetitive controller for motion systems subject to periodic exogenous signals. Moreover, an adaptive law for bound estimation is devised to ensure the presence of a sliding motion for both repetitive learning and disturbance observation. The tracking motion system of a disk drive is considered in practice, and a traditional repetitive controller is also implemented for performance comparisons with the proposed scheme. Experimental results are reported in this paper, showing the efficacy of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.