Abstract
Outrunner blocks are nearly intact pieces of debris that detach from a slowing‐down submarine landslide and flow ahead of the front. Data gathered from different sliding areas highlight some properties of outrunner blocks and in particular their inordinate mobility reflected in runouts of up to 25 kilometres, even on very gentle slopes. Blocks may produce an erosion glide track on the sea floor few centimetres to several metres deep, which in some cases exhibits regularly spaced grooves along the flow direction. Understanding the dynamics of outrunner blocks may shed light on the flow and lubrication of submarine landslides. We develop a simple hydrodynamic model of a rigid block interacting with ambient water and subject to lubrication with the sea floor, and calculate numerically the equation of motion for the block. We find that as a consequence of lift forces and water lubrication, the block may reach long runouts, in agreement with data. When the block is moving at high speed, we find an oscillating solution to the equations of motion which could explain the creation of dashed grooves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.