Abstract

In this paper, we propose a new trajectory tracking control of a ball-screw-driven servomechanism for a shaking table. Displacement and acceleration sensors are assumed available, but currents and velocity sensors are not. The design of this control strategy is based on sliding mode approach with state estimation by extended Kalman filter/unscented Kalman filter. The basic feature of this design is that high velocity and high positioning accuracy can be met despite of the fact that the controlled process suffers from noise, friction, and uncertainty. Torque/flux sliding mode controller with online estimation using extended Kalman filter and unscented Kalman filter is proposed to improve velocity sensorless trajectory tracking control of uniaxial earthquake simulator. Simulation works are carried out to show the ability of the proposed method to simulate the speed and acceleration of 2 important earthquakes. The results also demonstrate the activity of the proposed strategy at wide range of velocity operation with measurement noises.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.