Abstract

This paper presents a dual-stage control system design method for the three-axis-rotational maneuver control and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In this design approach, the attitude control system and vibration suppression were designed separately using a lower order model. Based on the sliding mode control (SMC) theory, a discontinuous attitude control law in the form of the input voltage of the reaction wheel is derived to control the orientation of the spacecraft actuated by the reaction wheel, in which the reaction wheel dynamics is also considered from the real applications point of view. The asymptotic stability is shown using Lyapunov analysis. Furthermore, an adaptive version of the proposed attitude control law is also designed for adapting the unknown upper bounds of the lumped disturbance so that the limitation of knowing the bound of the disturbance in advance is released. In addition, the concept of varying the width of boundary layer instead of a fixed one is also employed to eliminate the chattering and improve the pointing precision as well. For actively suppressing the induced vibration, modal velocity feedback and strain rate feedback control methods are presented and compared by using piezoelectric materials as additional sensors and actuators bonded on the surface of the flexible appendages. Numerical simulations are performed to show that rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque and parameter uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.