Abstract

Owing to the complex dynamics of quadrotor unmanned aerial vehicles (UAVs) and their susceptibility to unknown interferences in an actual working environment, the flight control accuracy of UAVs is extremely high. Moreover, their anti-interference ability is particularly important. This study designed a sliding-mode controller based on the extended state observer. The position control was obtained through the outer-loop position controller. The attitude control was determined through the inner-loop attitude controller. The input of the UAV system was obtained through the controller. The boundary-layer function was used to weaken the oscillatory response of the system, and the traditional extended state observer was improved to improve the response speed, robustness, and tracking accuracy of the controller. For the entire process, the input and output state information of the system and total internal and external disturbances were estimated in real-time through the extended state observer. A sliding-mode control law was designed to compensate for the estimated disturbance in real-time to realize attitude control. Finally, Lyapunov theory was used to confirm the stability of the system. The simulation results demonstrated the improved anti-interference and tracking ability of the designed controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call