Abstract

In this paper, the design of the terminal continuous-time sliding mode controller is presented. The influence of the external disturbances is considered. The robustness for the whole regulation process is obtained by adapting the time-varying sliding line. The representative point converges to the demand state in finite time due to the selected shape of the nonlinear switching curve. Absolute values of control signal, system velocity and both of these quantities are bounded from above and considered as system constraints. In order to evaluate the dynamical performance of the system, the settling time is selected as a quality index and it is minimized. The approach presented in this paper is particularly suited for systems in which one state (or a set of states) is the derivative of the other state (or a set of states). This makes it applicable to a wide range of electromechanical systems, in which the states are the position and velocity of the mechanical parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.