Abstract

SummaryThis paper investigates the quantized sliding mode control of Markov jump systems with time‐varying delay. A dynamical adjustment law is explored to quantize the system output. By constructing an observer‐based integral sliding surface, a sliding mode controller is designed to take over the dynamical motion of state estimation and ensure the reachability of sliding surface. A new scaling manner is developed to build the bound between the system output and quantized error. With the help of separation strategies for controller synthesis and general transition probabilities and a lower bound theorem for nonlinear integral terms, a new synthesis method to ensure the required stability and meet the required performance is proposed in the form of linear matrix inequalities. The validity of the proposed control method is illustrated by a numerical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.