Abstract
In this paper, we present a sliding mode control (SMC) based approach to address the velocity tracking and head-angle control problem of a planar snake robot. The motion characteristics of a snake exhibit the generation of propulsive force as a result of anisotropic friction with respect to the ground. To imitate the motion of a snake, all the joints of the snake robot are tracked to a serpenoid gait function utilizing virtual holonomic constraints. The parameters of the gait function are obtained from the SMC resulting in head-angle control and velocity tracking. SMC has been chosen to ensure robustness and stability of the system in the presence of uncertainties arising from variation in the friction force coefficients between the robot and the ground. Lyapunov's stability analysis proves the finite-time stability of the system. The control scheme has also been verified and compared with an existing approach through simulation studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.